Canonical activity of Apaf1 and Caspase-3 in mitochondria-dependent cell death

THE PRIMER: mitochondrion

THE RELAY: Apaf1 and the apoptosome

THE EFFECTOR: Active casp-3

Active casp-3

Procasp-3

Casp-9

Apoptosome

CELL DEATH
Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease

Marcello D’Amelio1,2, Virve Cavallucci1, Silvia Middei3, Cristina Marchetti4, Simone Pacioni5, Alberto Ferri6, Adamo Diamantini7, Daniela De Zio8, Paolo Carrara9, Luca Battistini7, Sandra Moreno9, Alberto Bacci5, Martine Ammassari-Teule3, Hélène Marie4,10 & Francesco Cecconi1,8

Synaptic loss is the best pathological correlate of the cognitive decline in Alzheimer’s disease; however, the molecular mechanisms underlying synaptic failure are unknown. We found a non-apoptotic baseline caspase-3 activity in hippocampal dendritic spines and an enhancement of this activity at the onset of memory decline in the Tg2576-APPsw mouse model of Alzheimer’s disease. In spines, caspase-3 activated calcineurin, which in turn triggered dephosphorylation and removal of the GluR1 subunit of AMPA-type receptor from postsynaptic sites. These molecular modifications led to alterations of glutamatergic synaptic transmission and plasticity and correlated with spine degeneration and a deficit in hippocampal-dependent memory. Notably, pharmacological inhibition of caspase-3 activity in Tg2576 mice rescued the observed Alzheimer-like phenotypes. Our results identify a previously unknown caspase-3-dependent mechanism that drives synaptic failure and contributes to cognitive dysfunction in Alzheimer’s disease. These findings indicate that caspase-3 is a potential target for pharmacological therapy during early disease stages.

Review

Neuronal caspase-3 signaling: not only cell death

M D’Amelio*,1,2, V Cavallucci1,2 and F Cecconi*,1,2

Caspases are a family of cysteiny1 aspartate-specific proteases that are highly conserved in multicellular organisms and function as central regulators of apoptosis. A member of this family, caspase-3, has been identified as a key mediator of apoptosis in neuronal cells. Recent studies in snail, fly and rat suggest that caspase-3 also functions as a regulatory molecule in neurogenesis and synaptic activity. In this study, in addition to providing an overview of the mechanism of caspase-3 activation, we review genetic and pharmacological studies of apoptotic and nonapoptotic functions of caspase-3 and discuss the regulatory mechanism of caspase-3 for executing nonapoptotic functions in the central nervous system. Knowledge of biochemical pathway(s) for nonapoptotic activation and modulation of caspase-3 has potential implications for the understanding of synaptic failure in the pathophysiology of neurological disorders. Fine-tuning of caspase-3 lays down a new challenge in identifying pharmacological avenues for treatment of many neurological disorders.

Cell Death and Differentiation advance online publication, 4 December 2009; doi:10.1038/cdd.2009.180
Detection of early synaptic alterations

Hippocampal post-synaptic density (PSD)

- kDa WT Tg
 - 106 GluR1
 - 100 GluR1pSer845
 - 106 GluR1pSer831
 - 108 GluR2/3
 - 115 NMDA1
 - 177 NMDA1
 - 180 NMDA2
 - 132 mGluR5
 - 100 PSD-95
 - 83 NSF
 - 54 αCaMKII

Hippocampal total extract

- kDa WT Tg
 - 106 GluR1
 - 100 GluR1pSer845
 - 55 Tubulin

Hippocampal synaptic fractionation

- kDa WT Tg
 - 106 GluR1
 - 132 mGluR5
 - 100 PSD-95
 - 83 NSF
 - 54 αCaMKII

Basic glutamatergic transmission

- WT
 - +20 mV
 - -65 mV
- Tg
 - 100 ms
 - 30 pA

Protein expression (% control)

- GluR1
- GluR1pSer845

GuoR1 (% control)

- TxP
- P3
Active caspase-3 localizes in post-synaptic compartment
Caspase-3 inhibition in vivo influences GluR1 distribution and rescues spine head size and memory performance.
Model of caspase-3 role in dendritic spine degeneration

- AMPA Receptor
- GluR1
- S845
- OH

- AMPA Receptor
- GluR1
- S845
- OH

- Active calcineurin

- Procasp-3
- Casp-9
- Apoptosome

- Aβ-mediated stress

- NMDA Receptor
An alternative role for **THE EFFECTOR**: Caspase-3 in mitochondria-dependent nonapoptotic cleavage of a synaptic substrate

Diagram:
- Aβ-mediated stress
- ProCasp-3
- Active casp-3
- Casp-9
- Apoptosome
- Specific target activation
- Cell death

Diagram Details:
- ProCasp-3 activates Active casp-3.
- Active casp-3 is involved in specific target activation.
- Aβ-mediated stress leads to cell death through the apoptosome pathway.