Esci dai Frame

  ELETTRONICA ORGANICA E BIOLOGICA Docente: Thomas Brown Email: thomas.brown@uniroma2.it Telefono: 0672597779
    Programma del Corso
 
''Elettronica Organica e Biologica'' da 10 crediti;

(''Elettronica Organica e Biologica I '' - ''Elettronica Biologica e Molecolare'' da 5 Crediti e metà del corso)

Titolare del corso: Prof. Thomas Brown

Il corso di Elettronica Organica e Biologica ha lo scopo principale di dare allo studente le basi dei dispositivi optoelettronici e della tecnologia basati su semiconduttori organici. Inoltre, parte del corso introdurrà le tecnologie optoelettroniche utilizzate nell’industria della bioinformatica per la rivelazione o sequencing genetico.

La tecnologia dell’optoelettronica organica si basa su nuovi materiali semiconduttori basati su composti del carbonio come molecole organiche o polimeri. Questi materiali possono essere sintetizzati in modo da controllarne diverse proprietà semiconduttive utili per applicazioni come la luminescenza (LED), il trasporto e la mobilità di carica (transistor), l’assorbimento di luce (photodiodi e celle fotovoltaiche), e la modulazione di tali proprietà dovute a sollecitazioni esterne (es. sensori di gas e pressione). Inoltre questi materiali non solo hanno una flessibilità meccanica intrinseca ma hanno anche la possibilità di essere depositati su larga area mediante semplici tecniche di evaporazione (per piccole molecole) o di stampa (per i polimeri solubili in solventi organici) come l’ink jet printing o la serigrafia sia su substrati rigidi che flessibili. È per questo che tale tecnologia è anche conosciuta come “plastic” o “printed” elettronics.

Dopo una introduzione alla chimica organica e alla descrizione quantistica delle molecole e dei composti organici, il corso esplicherà il funzionamento e le architetture dei dispositivi optoelettronici a semiconduttori organici, in particolare gli Organic (o Polymer) Light Emitting Diodes (OLED, PLED), Organic Thin Film Transistors (OTFT), Organic Solar Cells (OSC), Dye Solar Cells (DSC), sensori organici e dispostivi piezoelettrici. Successivamente si studierà il funzionamento, la progettazione e le tecniche realizzative di applicazioni in via di sviluppo basate su questi dispositivi come i Flat Panel Displays OLED (oggi già in commercio come schermi di MP3 players e telefoni cellulari), la carta elettronica (E-Paper- con il case study della Plastic Logic Ltd), chip RFID, Sensori di gas o di pressione, photodetector arrays e moduli fotovoltaici. Vi sarà una parte del corso dedicata ad esperienze in laboratorio dove verranno investigati i metodi di indagine sperimentale per la caratterizzazione dei materiali organici (caratterizzazione morfologica, ottica e elettrica), dei dispostivi e delle applicazioni (display OLED e Celle Solari DSC). Inoltre lo studente porterà avanti la costruzione di celle DSC e la loro caratterizzazione IV: sotto simulatore solare per estrarne i parametri fondamentali (es efficienza di conversione) oppure sotto luce monocromatica per lo studio dell’efficienza quantica esterna del dispositivo.

Una parte del corso verterà sui dispositivi e sui sistemi optoelettronici per il gene detection o rilevazione genetica. Dopo una breve introduzione sui concetti basilari della biologica molecolare, verrà introdotta la Green Fluorescent Protein (GFP) che viene usata come marker o come rilevatore di processi metabolici o genetici all’interno di cellule o organismi. Il corso poi mostrerà come vengono progettati, costruiti e utilizzati (usando come case study il caso della fibrosi cistica) i gene chip arrays mediante o tecniche fotolitografiche (case study Affymetrix) o tecniche come l’ink jet printing. Il corso investigherà la bioluminescenza e come tali processi naturali (come quello della lucciola) sono stati utilizzati per progettare e costruire tra i sistemi più potenti oggi per fare rilevazione di DNA (come quelli basati sul pyrosequencing).

L’elettronica organica (anche conosciuta come “stampata” o “plastica”) sta conoscendo un grosso sviluppo a livello internazionale ed è stata identificata dagli organi della Comunità Europea come molto importante (e su cui investire) in quanto l’Europa è già all’avanguardia in questo settore. Alcune applicazioni sono già in commercio (come gli OLED nei telefoni cellulari) ed altre (E-Paper, DSC) sotto sviluppo in linea pilota di varie realtà industriali europee. La parte sui dispositivi optoelettronici per la rivelazione di geni o DNA si colloca anch’esso in un settore dagli ampi sviluppi futuri come la parte hardware della bio-informatica. Questo corso darà allo studente gli strumenti necessari per capire il funzionamento dei dispostivi e come vengono progettate le applicazioni in questi due settori in forte crescita a livello internazionale.