Vernalization and epigenetics: how plants remember winter
Sibum Sung¹ and Richard M Amasino²

One of the remarkable aspects of the promotion of flowering by vernalization is that plants have evolved the ability to measure a complete winter season of cold and to ‘remember’ this prior cold exposure in the spring. Recent work in Arabidopsis demonstrates the molecular basis of this memory of winter: vernalization causes changes in the chromatin structure of a flowering repressor gene, FLOWERING LOCUS C (FLC), that switch this gene into a repressed state that is mitotically stable. A key component of the vernalization pathway, VERNALIZATION INSENSITIVE3 (VIN3), which is a PHD-domain-containing protein, is induced only after a prolonged period of cold. VIN3 is involved in initiating the modification of FLC chromatin structure. The stable silencing of FLC also requires the DNA-binding protein VERNALIZATION1 (VRN1) and the polycomb-group protein VRN2.

Abbreviations
CBF1 C-repeat/DRE-Binding Factor1
COR COLD REGULATED
FLC FLOWERING LOCUS C
FRI FRIGIDA
HOS1 HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1
HP1 HETEROCHROMATIN PROTEIN1
PHD PLANT HOMEODOMAIN
PRC2 polycomb repressor complex2
Su(z)12 SUPPRESSOR OF ZESTE-12
VIN3 VERNALIZATION INSENSITIVE3
VRN1 VERNALIZATION1

Introduction
Plants have evolved the ability to alter their developmental program in response to environmental stimuli. A major switch in the developmental program is the transition to flowering. In many plant species, the timing of this transition is determined by seasonal changes that are sensed by the plant. Photoperiod and temperature are two of the main environmental cues that plants monitor to determine the correct time to flower.

Vernalization is a term that describes the promotion of flowering after exposure to cold. Specifically, vernalization results in ‘the acquisition or acceleration of the ability to flower by a chilling treatment’ [1]; after vernalization, plants do not necessarily initiate flowering but acquire the competence to do so. In many plant species, vernalization requires long-term exposure to the low temperatures of a typical winter. This is a useful adaptation because many vernalization-requiring species have a winter-annual or biennial habit; the plants begin growing in one season but flower in the spring of the second growing season. The term vernalization is derived from the Latin word *vernus*, meaning ‘of the spring’. In vernalization-requiring species, it is crucial that the plants are not ‘tricked’ into flowering in late autumn by transient exposure to cold followed by warm conditions, thus the requirement for prolonged cold. The flowering of many vernalization-requiring species is also promoted by long photoperiods, and this photoperiod requirement provides another level of assurance that flowering does not occur in late autumn when the days are short.

The physiology of vernalization has been studied extensively since the defining work of Gustav Gassner in the early 20th century (discussed in [2]). Studies involving grafting and localized cooling have shown that the apical meristem is the site of cold perception during vernalization, and that vernalization causes the meristem to become competent to flower [2–4]. Once meristems have been exposed to prolonged cold, they ‘remember’ that they have been vernalized, and this memory is mitotically stable. One of the classic experiments demonstrated the existence of this memory by vernalizing biennial *Hyoscyamus niger* and subsequently growing the vernalized plants in non-inductive photoperiods (discussed in [2]).

The vernalized *H. niger* plants were able to remember the vernalization for long periods of time, and were subsequently able to flower when exposed to inductive photoperiods. Another classic study that both identified the site of vernalization and demonstrated the memory effect involved the *in-vitro* regeneration of plants from various tissues of vernalized *Lunaria biennis* [3,4]. Only tissues that contained dividing cells (including root meristems) regenerated into vernalized plants. Thus dividing cells (or perhaps cells in which DNA replication is occurring) are a prerequisite for vernalization, and the vernalized state is maintained through tissue culture. This type of experiment has also been replicated in *Arabidopsis* [5]. The mitotically stable cellular memory illustrates the
epigenetic nature of vernalization. It is vital, of course, that this memory is lost in the next generation so that the vernalization requirement is re-established.

These classical studies of vernalization raise some interesting questions. How can plants measure long-term cold exposure? For example, why does a week of cold not result in vernalization when four weeks does? What is the basis of the mitotically stable cellular memory of vernalization. Recent genetic and physiological studies of the vernalization pathway in Arabidopsis, and the identification of some of the genes that are involved in this pathway, have provided a framework for addressing these intriguing questions.

Genetics of vernalization

Many species include both summer-annual types, which flower rapidly without vernalization, and biennial or winter-annual types. The number of genes that are responsible for determining whether a plant in such a species has the biennial or the annual habit can be determined readily. One of the first studies of this type was Correns' demonstration in 1904 that the biennial habit was conferred by a single dominant gene in H. niger (discussed in [2]). Although most commonly used laboratory strains of Arabidopsis are rapid-flowering summer annuals, many accessions of Arabidopsis are winter annuals (Figure 1). Napp-Zinn [6] first showed that in certain winter annual to summer annual crosses, the winter-annual habit in Arabidopsis is conferred by a single dominant gene, which he named FRIGIDA (FRI). Subsequent studies by several groups have shown that FRI confers the winter-annual habit in many accessions [7,8]. Studies of natural variation have also shown that a dominant allele of another gene, FLOWERING LOCUS C (FLC), is necessary for FRI to confer a winter-annual habit [9,10].

The cloning of FLC [11,12] provided the first insight into the molecular nature of vernalization in Arabidopsis. FLC is a repressor of flowering, and the presence of a dominant allele of FRI elevates FLC expression to a level that inhibits flowering [11,12]. Vernalization overcomes the effect of FRI by repressing FLC expression, and this repression is stably maintained after a return to warm growth conditions [11,12]. Thus, the epigenetic repression of FLC is a key feature of vernalization. FLC is expressed predominantly in mitotically active regions [13], such as the shoot and root apical meristems, which are the sites of cold perception and the tissues that achieve the vernalized state. It should be noted that although most of the promotion of flowering by vernalization in Arabidopsis is due to FLC repression, there is clearly a component of flowering promotion that is FLC independent [14]. The targets of the FLC-independent component of vernalization are not known.

The cloning of FRI [15] demonstrated that the recessive alleles of fri that are found in summer annuals are often loss-of-function mutations. Therefore, the summer-annual types of Arabidopsis have been derived from winter annuals by the loss of FRI. Lesions in FRI have arisen independently several times [16]; presumably, these fri mutations result in an adaptation to a particular niche. Recently, it has also been shown that certain summer-annual types contain an active FRI allele but also contain an allele of FLC that is not upregulated by FRI [16,17]. Thus, there are at least two routes by which winter-annual types of Arabidopsis have become summer annuals.

Regulation of gene expression by cold

The requirement of winter annuals and biennials for vernalization means that they will be exposed to freezing temperatures during winter and must be freezing tolerant. The process of preparing to withstand cold is known as cold acclimation [18]. Both cold acclimation and vernalization must occur in cold but non-freezing temperatures because metabolic activity is required for these processes;

Figure 1

Flowering behavior of summer- and winter-annual types of Arabidopsis thaliana. (a) Summer-annual types of Arabidopsis flower rapidly without vernalization treatment. In contrast, winter-annual types, which have functional FRI and FLC alleles, (b) flower very late without vernalization and (c) flower rapidly, like a summer annual, if vernalized.
freezing temperatures would suspend metabolic activity. In contrast to vernalization, cold acclimation can be achieved within a relatively short time period ([19,20]; Figure 2). The rapid establishment of cold acclimation is advantageous because plants need to be rapidly protected from freezing, even if the cold spell is only temporary (as is often the case in late autumn). On the other hand, the requirement for a longer period of cold for vernalization ensures that plants only respond to a complete winter and not to temperature fluctuations during the autumn. The premature induction of flowering in late autumn just before the onset of winter would be disastrous; thus, in temperate climates, alleles of genes in the vernalization pathway that favor a requirement for a long cold exposure are obviously selected for.

In cold acclimation, a suite of genes are induced by cold exposure; for example, C-repeat/DRE-Binding Factor1 (CBF1), a transcription factor that activates many cold-regulated genes. (CBF1), a transcription factor that activates many cold-exposure genes such as C-repeat/DRE-Binding Factor1 (CBF1). Elevated CBF expression suggests that some early components of the cold signaling pathway might be shared, at least in part, by the cold acclimation and vernalization pathways [22]. The CBF phenotype indicates that CBF1 is a negative regulator of cold signaling [22]. CBF1 encodes a RING-finger protein, and such proteins are usually associated with the ubiquitin-protein degradation pathway. It is not yet known how protein degradation is related to early events in cold signaling.

Mechanism of vernalization

It has been proposed that the pathways that lead to cold acclimation involve sensing changes in membrane fluidity, Ca$^{2+}$ fluxes and cascades of phosphorylation [18,23]. Applications of chemicals that affect membrane fluidity, Ca$^{2+}$ fluxes or protein phosphorylation are often sufficient to repress or induce some cold-acclimation genes [23,24]. None of these treatments has been shown to have an effect on vernalization, but such experiments are technically difficult because applying such treatments for long periods of time would be stressful to the plants. Nevertheless, we would not expect that sensing changes in membrane fluidity forms part of the long-term cold sensing in vernalization because plants rapidly adjust their membrane composition after exposure to cold so as to maintain the proper fluidity for cellular activity. Furthermore, a major difference between cold acclimation and vernalization is that vernalization results in a stable epigenetic switch (i.e. a memory of the past winter’s cold), whereas cold acclimation does not remain stable for long periods upon return to warm conditions.

Without a nervous system and brain to provide memory, plants must rely on a cellular memory to remember seasonal change. Cellular memory has a crucial role in development and differentiation in many organisms. Tissue-specific and developmental-stage-specific gene expression is often achieved through histone modifications, the so-called histone code [25]. Localized heterochromatin formation caused by a series of histone modifications often accounts for the epigenetic regulation of genes in many situations [26,27]. Recent results indicate that the cellular memory of vernalization results from an altered FLC chromatin structure.

Screens for mutants that remain late flowering after a long cold treatment have been used to identify genes in the vernalization pathway. Two Arabidopsis genes, VRN1 and VRN2, have been identified this way. The study of vrn1 and vrn2 mutants has revealed an interesting feature of the vernalization mechanism [28,29]. FLC is repressed during vernalization in the same way in these mutants and in wildtype Arabidopsis plants. However, the repressed state of FLC is not stably maintained in vrn1 and vrn2 mutants upon return to warm conditions.
conditions. Thus, VRN1 and VRN2 are responsible for the stable maintenance of the vernalized state but not for its initial establishment. Lesions in VRN2 also affect the chromatin structure of FLC [28], suggesting that the remodeling of FLC chromatin is part of the vernalization process in Arabidopsis. The expression of VRN1 or VRN2 is

Figure 3

Hypothetical model of the vernalization-mediated, epigenetic silencing of FLC. During winter, cold-induced expression of VIN3 is necessary for a histone deacetylase (HDAC) complex to de-acetylate H3 in FLC chromatin. De-acetylation in turn creates an environment in which a VRN1-/VRN2-containing complex can methylate H3 at Lys9 as well as at Lys27. By analogy with mammalian and Drosophila complexes, the histone-methylating activity of the VRN1/VRN2 complex may be provided by an ENHANCER OF ZESTE [E(z)] homolog [33]. In the spring, VIN3 is no longer expressed and the maintenance of FLC repression requires the continued presence of VRN1 and VRN2, and perhaps other proteins such as HP1. HP1 binds to dimethylated H3 Lys9 [32**,34**] and is thought to be involved in the silencing of genes in plant euchromatin [35**].
not regulated by vernalization, and both of these genes are expressed more broadly than is FLC. This raises the question of how these rather ubiquitously and constitutively expressed genes repress FLC only after a vernalizing cold treatment.

The identification of VERNALIZATION INSENSITIVE3 (VIN3) provides an answer to this question [30**]. In vin3 mutants, the repression of FLC under extended cold conditions never occurs, indicating that VIN3 is responsible for the initial repression of FLC during cold exposure. Furthermore, the expression of VIN3 is only induced by a long period of cold, and as VIN3 is induced, FLC is repressed (Figure 3a). The induction of VIN3 by cold is transient; VIN3 mRNA becomes undetectable upon return to warm conditions. The induction of VIN3 occurs predominantly in the shoot and root apical meristems, the sites of cold perception and FLC repression during vernalization. This behavior is consistent with a role for VIN3 as a vernalization-specific regulator.

VIN3 encodes a PLANT HOMEODOMAIN (PHD)-finger-containing protein. PHD-finger motifs are thought to be involved in protein–protein interactions and are often found in various components of chromatin-remodeling complexes [31]. VRN1 encodes a Myb-related DNA-binding protein, whereas VRN2 encodes a polycomb group protein that is similar to the Drosophila SUPPRESSOR OF ZESTE-12 (Su(z)12). In mammalian systems, the Su(z)12 homolog is a component of PRC2 (polycomb repressor complex2), which has histone methyltransferase activity [32**]. PRC2 also contains Enhancer of Zeste [E(z)] and there are at least three homologs of E(z) in Arabidopsis [33]. This class of polycomb group genes causes stable gene repression by promoting a series of histone modifications [27]. Thus, it is possible that VRN1, VRN2 and VIN3 participate in FLC chromatin remodeling. Indeed, chromatin immunoprecipitation (ChIP) assays using the vin3, vrn2 and vrn1 mutants revealed that vernalization results in a series of FLC chromatin modifications ([30**]; Figure 3b).

During vernalization, the acetylation levels of specific regions of FLC chromatin decrease, and this is followed by an increase in methylation of Histone H3 at Lys9 and Lys27. The evidence for this temporal order of changes comes from studies of the mutants. In vin3, none of the vernalization-mediated histone modifications are observed, suggesting that during vernalization, VIN3 is an establishing factor for these chromatin modifications. In vrn2 and vrn1 mutants, hypoacetylation (and FLC repression) is observed during vernalization, but the hypoacetylation and FLC repression are not maintained upon return to a warm temperature. Furthermore, none of the histone methylations are observed in vrn2 mutants, and only histone methylation on Histone H3 at Lys27 is observed in vrn1. These results suggest a model in which VIN3 is involved in the initial repression of FLC through hypoacetylation. The hypoacetylated state of FLC chromatin creates a favorable condition for subsequent histone modifications that involve VRN1 and VRN2. In animals, methylation of Histone H3 at Lys9 is thought to promote stable heterochromatin formation by recruiting HETEROCHROMATIN PROTEIN1 (HP1) [32**,34**]. The involvement of HP1 in repression in plant euchromatic gene also has been recently reported [35*]. Thus, vernalization triggers a series of histone modifications, ultimately resulting in a mitotically stable repression heterochromatin state that serves as a mechanism for remembering winter.

Conclusions and perspectives

Much of the current knowledge on the mechanism of vernalization has come from studies of the model plant Arabidopsis. Such studies first demonstrated that vernalization promoted flowering through the epigenetic repression of the flowering repressor FLC. Subsequent studies have revealed that the mechanism of FLC repression involves a series of modifications of FLC chromatin that ultimately result in a stable repressed state. The extent, if any, to which vernalization mechanisms are conserved among plant species remains to be determined. Recent work in a vernalization-requiring type of wheat indicates that the genetically identified targets of the vernalization pathway in wheat are not related to FLC [36*], but the basic mechanisms that sense prolonged cold could be conserved.

Now that we have the framework to explain how prolonged cold represses FLC, the most ‘upstream’ question that can be addressed is how does prolonged cold induces the expression of VIN3? It will also be interesting to explore the nature of the VIN3- and VRN1/VRN2-containing protein complexes to address the details of the biochemical mechanism of this cellular memory in plants.

Acknowledgements

We thank Mark Doyle for critical reading of this manuscript. Our work is supported by the College of Agricultural and Life Sciences and the Graduate School of the University of Wisconsin, and by grants from the US Department of Agriculture National Research Initiative Competitive Grants Program and the National Science Foundation (0133663) to RMA.

References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:

• Of special interest
** Of outstanding interest

16. Gazzani S, Gendall AR, Lister C, Dean C: Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol 2003, 132:1107-1114. The authors describe the analysis of additional summer-annual accessions of Arabidopsis. In addition, they identify additional types of lesions in FRT that have led to the conversion of winter-annual to summer-annual types. They also note that some summer-annual accessions have FRT coupled to weak alleles of FLC.

17. Michaels SD, He Y, Scortecci KC, Amasino RM: Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci USA 2003, 100:10102-10107. This paper provides direct evidence that an insertion in the FLC first intron results in a weak allele that is not as strongly upregulated by FRT. Weak alleles of FLC in other Arabidopsis accessions do not have the same lesion, suggesting that the attenuation of FLC activity to produce a summer-annual habit from a winter-annual type occurred independently at least twice.

29. Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C: Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 2002, 297:243-246. The authors identify another gene, VRN1, that is required to maintain the repressed state of FLC after vernalization. VRN1 encodes a Myb-related transcription factor.

30. Sung S, Amasino R: Vernalization in Arabidopsis thaliana is mediated by the PHD-finger protein VIN3. Nature 2003, in press. The authors report that a series of vernalization-mediated histone modifications of the FLC locus result in the stable repression of FLC and epigenetic memory of winter. They also identify VIN3. This protein is involved in the initiation of the vernalization-mediated histone modifications.

35. Kotake T, Takada S, Nakahigashi K, Ohto M, Goto K: Arabidopsis TERMINAL FLOWER 2 gene encodes a HETEROCHROMATIN PROTEIN 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes. Plant Cell Physiol 2003, 44:555-564. This authors report that the TERMINAL FLOWER 2 (TFL2) gene, which is involved the floral transition in Arabidopsis, encodes a HP1 homolog. The authors suggest that TFL2 in plants, in contrast to HP1 homologs in other organisms, may play a role in the repression of genes in euchromatin. TFL2 delays flowering by repressing the expression of FLOWERING LOCUS T (FTL) and several floral homeotic genes that are downstream of FTL.
The authors of this paper report the identification of the VRN1 gene of wheat, which confers a requirement for vernalization. (The wheat VRN1 has no molecular relatedness to the Arabidopsis VRN1 or to FRI and FLC.) Natural variation exists in both VRN1 in wheat and FRI and FLC in Arabidopsis, and this variation accounts for the difference between vernalization-requiring and summer-annual types. Thus different types of genes account for natural variation in the vernalization-requirement in wheat and Arabidopsis.