back

Università degli Studi di Roma 'Tor Vergata'


Matematica

ffffff

Prof. Piermarco Cannarsa


Pubblicazioni back

  1. P.Cannarsa & C.Sinestrari, Convexity properties of the minimum time function, Calc.Var. 3 (1995), pp. 273-298;
  2. P.Cannarsa & C.Sinestrari, On a class of Minimum Time problems, Discrete and Continuous Dynamical Systems 1 (1995), pp. 285-300;
  3. P.Cannarsa & H. Frankowska, Value function and optimality conditions for semilinear control problems. II: parabolic case, Applied Math. Optim., 33 (1996), pp. 1--33;
  4. P.Cannarsa & G. Da Prato, Infinite dimensional elliptic equations with Hölder continuous coefficients, Advances in Differential Equations, 1 (1996), pp. 425--452;
  5. P.Cannarsa & M.E.Tessitore, Dynamic programming equation for a class of nonlinear boundary control problems of parabolic type, Control and Cybernetics, 25 (1996), pp. 483--495;
  6. P.Cannarsa & M.E.Tessitore, Cauchy problem for Hamilton-Jacobi equations and Dirichlet boundary control problems of parabolic type, Control of Partial Differential Equations (E. Casas ed.), Lecture Notes in Pure and Applied Mathematics n.174, Dekker, New York, 1996;
  7. P.Cannarsa & M.E.Tessitore, Infinite dimensional Hamilton-Jacobi equations and Dirichlet boundary control problems of parabolic type, SIAM J.Control Optim., 34 (1996), pp. 1831--1847;
  8. P.Cannarsa, A.Mennucci & C.Sinestrari, Regularity results for solutions of a class of Hamilton-Jacobi equations, Archive for Rational Mechanics and Analysis, (1997) 140, 197--223;
  9. P.Cannarsa, M.Giannini & M.E.Tessitore, Optimal control of forward looking processes, Journal of Economic Dynamics and Control, 22 (1997), 49--66;
  10. P.Cannarsa & C. Sinestrari, An infinite dimensional time optimal control problem, in Proceedings from the 1996 Joint Summer Research Conference "Optimization Methods in Partial Differential Equations" June 16--20, 1996, Mount Holyoke College, Contemporary Mathematics (American Mathematical Society) vol. 209,1997, 29--41;
  11. P.Cannarsa & M.E.Tessitore, On the behaviour of the value function of a Mayer optimal control problem along optimal trajectories, in Proceedings from the 7th International , Conference on Control and Estimation of Distributed Parameter Systems, Vorau Styria, July 14--20, 1996; International Series of Numerical Mathematics, Vol. 126 (1998), Birkhuser Verlag, Basel, 81--88;
  12. P.Cannarsa, H. Frankowska \& C. Sinestrari, Optimality conditions and synthesis for the Minimum Time Problem, in corso di stampa su Journal of Mathematical Systems, Estimation, and Control, Summary: Journal of Mathematical Systems, Estimation, and Control, 8 (1998), 123-126;
  13. P.Cannarsa & G. Da Prato, Potential theory in Hilbert spaces, in Proceedings of a Conference in Honor of the 70th Birthdays of Peter D. Lax and Louis Nirenberg ``Recent Advances in Partial Differential Equations'' June 10--14, 1996, Venice, Proceedings of Symposia in Applied Mathematics, (American Mathematical Society) vol. 54, 1998, 27--51.
  14. P.ALBANO, P.CANNARSA & V. KOMORNIK, Well posedness of semilinear heat equations with iterated logarithms, International Series of Numerical Mathematics 133, Birkh\"auser Verlag, Basel, 1999, 1--11;
  15. P.CANNARSA & C. PIGNOTTI, Optimal control with state constraints: a semiconcavity result, Proceedings of the 38^ Conference on Decision Control, Phoenix, Arizona USA, December 1999;
  16. P.ALBANO & P.CANNARSA, Propagation of singularities for concave solutions of Hamilton--Jacobi equations, in EQUADIFF 99 Proceedings of the International Conference on Differential Equations (D. Fiedler, K. Groger and J. Sprekels Eds.), World Scientific, Singapore, 2000, 583--588.
  17. P.ALBANO \& P.CANNARSA, Singularities of semiconcave functions in Banach spaces, in Stochastic analysis, control, optimization and applications: a volume in honor of W.H. Fleming} (W.M.McEneaney, G.G.Yin and Q.Zhang eds.), Birkhauser, Boston, 1999, 171--190;
  18. E.N.BARRON, P.CANNARSA, R.JENSEN  & C. SINESTRARI, Regularity of Hamilton--Jacobi equations when forward is backward, Indiana Univ. Math. J. 48 (1999), 385--409;
  19. P.CANNARSA, V. KOMORNIK & P. LORETI, Well posedness and control of semilinear wave equations with iterated logarithms, ESAIM: Control, Optimization and Calculus of Variations 4 (1999), 37--56 (URL:http://www.emath.fr/cocv/);
  20. P.CANNARSA, V. KOMORNIK & P. LORETI, Controllability of semilinear wave equations with infinitely iterated logarithms, {\em Control & Cybernetics} 28 (1999), 449--461;
  21. P.ALBANO & P.CANNARSA, Structural properties of singularities of semiconcave functions, Ann.Scuola Norm.Sup. Pisa Cl.Sci. 28 (1999), 719--740;
  22. P.ALBANO, P.CANNARSA & C. SINESTRARI, Regularity Results for the Minimum Time Function of a Class of Semilinear Evolution Equations of Parabolic Type,   SIAM J. Control Optim.} 38 (2000), 916--946;
  23. P.CANNARSA, C. PIGNOTTI & C. SINESTRARI, Semiconcavity for optimal control problems with exit time, Discrete and Continuous Dynamical Systems 6 (2000), 975--997;
  24. P. CANNARSA, Soluzioni di viscosità, in Enciclopedia Italiana, Appendice 2000 I (2000), 591--592.


Coordinatore:
Prof. Piermarco Cannarsa


06/72594626 back Cannarsa@axp.mat.uniroma2.it