State- and Site-Selective Dissociation Processes of Core-Excited Organic Molecules

<u>A.Hiraya</u>, H. Yoshida, Y. Senba, T. Tokushima, Y. Mishima, M. Morita, K. Kato, T. Gejo¹ and K. Mase²

Hiroshima University, Higashi-Hiroshima 739-8526, JAPAN ¹UVSOR, Institute for Molecular Science, JAPAN ²Photon Factory, Institute of Materials Structure Science, JAPAN

There is an increasing demand for soft x-ray photochemistry from astrophysics and interstellar chemistry with increasing the number of organic molecules identified in the interstellar space where is filled by star-born x-ray. At present, more than 70 organic molecules such as H₂CO, CH₃CN, CH₃OH, CH₃COOH, and even an amino acid (glycine: NH₂CH₂COOH) were identified. However the number of studies on core-excited organic molecules especially on those found in interstellar space are quite limited. Site- and state- selective dissociation processes have been explored for CH₃CN, CH₃OH and several other molecules with high mass-resolution partial ionyield spectroscopy and also their mechanisms are studied with Auger electron-ion(-ion) coincidence (AE(PI)PICO) measurements. From detection of doubly charged ion (CH₂CN²⁺) and further from AEPIPICO measurements at the π^* core-resonance of CD₃CN, it was found that auto-ionization steps from singly charged Auger final states take an important role in the partial ion-yields. Ion branching ratio of CD₃CN, including CH_x^+ (x=0-3) distribution, is mainly determined by "Auger final states energy" regardless of excited atom, C or O, and also of excited state, π^* or above ionization threshold. On the contrary, the partial yields spectra of CD₃OH clearly exhibits both siteand state-selectivity. For example, suppression of O^+ and CO^+ yields while enhancement of CD_3^+ and DCO⁺ yields are observed at the lowest resonance (3sa') from the O 1s. AEPICO measurements show that suppression of O⁺ and CO⁺ is determined at the core-excited state not at the Auger final states. Although most simple interpretation for the suppression of O⁺ and CO⁺ yields is the repulsive nature of the O-H bond at the O 1s to the 3sa' excited state, enhancement of CD₃⁺ and DCO⁺ yields at the same excited state need more detailed explanations. At the C 1s region another type of state-selectivity on CD₃⁺ and COH⁺ yields is found, while the state-selectivity on O-H bond scission found at the O 1s disappears.