Decay Properties of Higher Vibrational States in CO for the C1s -> **p*** Excitation

<u>R. Feifel¹</u>, L. Karlsson¹, M..N.Piancastelli², P. Salek³, R. F. Fink¹, M.Bässler^{1,4}, O.Björneholm¹, C.Miron^{1,5}, H.Wang¹, K. Wiesner¹, I.Hjelte¹, S.L.Sorensen⁶, A. Naves de Brito⁷, F. Kh.Gel'mukhanov^{3,8}, H. Ågren³ and S. Svensson¹

¹Department of Physics, Uppsala University, SWEDEN

²Department of Chemical Sciences and Technologies, University 'Tor Vergata'', Rome, ITALY

³Theoretical Chemistry, Royal Institute of Technology, Stockholm, SWEDEN

⁴MAX-lab, University of Lund, SWEDEN

⁵LURE, Bat 209d, Université Paris-Sud, and CEA/DRECAM/SPAM-LFP, CEN Saclay, Gif/Yvette, FRANCE

⁶Department of Synchrotron Radiation Research, University of Lund, SWEDEN ⁷Institute of Physics, University of Brasilia and Laboratório Nacional de Luz Síncrotron, Campinas, BRAZIL

⁸Institute of Automation and Electrometry, 630090 Novosibirsk, RUSSIA

With the availability of third-generation synchrotron light sources for the soft X-ray regime in combination with high-resolution photoelectron spectrometers, the investigation of very weak processes, often hitherto not possible at all to study, has become feasible. The first example is the N1s $\rightarrow \pi^*$ resonant Auger decay to the B final state in N₂⁺ [1] which demonstrates that a classification of decaying core-hole processes into "spectators" (2h-1e final state) and "participators" (1h-1e final state) is too rough in some cases. Another example is the observation of the spin selectivity in the vibrational progression of the X-participator decay following the $2p \rightarrow 6\sigma^*$ excitation in HCl which revealed a novel type of propensity mechanism [2]. In this work we reinvestigate the resonant Auger decay following C1s $\rightarrow \pi^*$ excitation in CO at high resolution. We will demonstrate that one can investigate the decay properties of higher vibrational levels than only v' = 0, 1, 2, even if these higher vibrational states are not "visible" in a total ion or total electron yield absorption spectrum.

The experiments were performed at the recently comissioned undulator beamline I 411 [3,4] at the third-generation storage ring MAX II at MAX-lab, Lund, Sweden. This beamline is equipped with a modified Zeiss SX 700 plane-grating monochromator, covering the energy range between 50 eV and 1200 eV at high photon flux, and a rotatable hemispherical Scienta SES 200 high-resolution electron spectrometer.

[1] M.-N. Piancastelli et al., J. Phys. B: At. Mol. Opt. Phys. <u>33</u>, 1819, (2000)

[2] R. F. Fink et al., submitted to Phys. Rev. Lett. (2001)

[3] M. Bässler et al, J. Electron Spectrosc. Relat. Phenom. <u>101-103</u>, 953, (1999)

[4] M. Bässler et al, Nucl. Instr. Methods (accepted for publication 2001)