Selective Fragmentation of Valence and Core Electron Excited CD₄ and SF₆ Molecules

<u>M. Stankiewicz^a</u>, J. Rius i Riu^b, E. Kukk^c, P. Erman^b, P. Hatherly^d, M. Huttula^c, A. Karawajczyk^b, E. Rachlew^b and P. Winiarczyk^a.

^aInstytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagiellonski, Krakow, POLAND

^bSection of Atomic and Molecular Physics, Department of Physics I, Royal Institute of Technology, KTH, Stockholm, SWEDEN

^cElectron Spectroscopy Group, Department of Physical Sciences, University of Oulu, FINLAND

^dJ.J.Thomson Physical Lab. The University of Reading, Whiteknights,. Reading, U.K.

Electron-ion coincidence measurements with energy resolved electrons are a powerful tool in studies of molecular fragmentation processes. By detecting events correlated with the electrons of defined kinetic energy only fragmentations from a specific doorway state are monitored while the remaining channels are discriminated [1]. Presently, we have applied this technique in measurements of coincidence spectra of the CD_4 and SF_6 molecules following valence and core electron excitation. Our experiment has been implemented using an electron-ion coincidence set up installed at the undulator beam line 411 in MAX Laboratory in Lund, Sweden. It comprises a 125 mm hemispherical electron energy analyser and 110 mm ion time-of-flight analyser mounted collinearly. An inbuilt gas cell provides a target pressure 10-100 times above the chamber pressure. The measurements are performed at the magic angle with respect the synchrotron light polarization's plane.

Our results show that the CD_4^+ molecule in the $1t_2^{-1}$ state is stable or breaks up into $CD_3^+ + D$ only. None of these reactions occur from the $2a_1^{-1}$ state for which the D⁺, CD⁺ and CD₂⁺ fragments were observed only. CI computations [2] reveal that the CD_4^+ fragments into $CD_3^+ + D$ in a process, where the initially excited ${}^{2}B_{1}$ state of the C_{2v} geometry undergoes the transition to the state of the C_{3v} geometry which instantaneously fragments to $CD_{3}^{+} + D$. Dissociations from the $2a_{1}^{-1}$ state are governed by the 2 ${}^{2}A_{1}$ states of C_{2v} and C_{3v} geometries. Molecular fragmentation of CD_{4} was also studied following core excitations of the C 1s electrons. Autoionization of the excited state to the $1t_{2}^{-1}$ state significantly alters the CD_{4}^{+}/CD_{3}^{+} fragments ratio, which is the first demonstration of a correlation between nuclear motion and molecular dissociation in the CD_{4} molecule. In addition, strong spectator Auger transitions that create double-hole ionic states result in a drastically different fragmentation pattern. Molecular fragments D^{+} , C^{+} , CD^{+} and CD_{2}^{+} are detected in coincidence with the Auger electrons, indicating a more complete breakdown of the molecule.

The coincidence measurements of the SF₆ molecule show that after ionisation to the $1t_{1g}^{-1}$ state the SF₆⁺ ion is unstable and fully dissociates into the SF5⁺ + F channel. Also unstable is the $4t_{1u}^{-1}$ state which fragments into SF₃⁺ + 3F in full agreement with predictions of Hitchcock et al [3]. Also, the mass spectra acquired in coincidence with the $5t_{1u}$, $3e_g$, $1t_{2u}$, $1t_{2g}$, and $5a_{1g}$ electrons reveal strong selectivity in dissociation from these states, which reflects the bonding properties of the potential surfaces involved in the studied processes.

References

K. Ueda, M. Simon, C. Miron, N. Leclercq, R. Guillemin, P. Morin, S. Tanaka Phys. Rev. Lett. 83, 3800 (1999).

[2] E. F. van Dishoeck, W. J. van der Hart, M. van Hemert Chem. Phys. **50**, 45 (1980).

[3] A. P. Hitchcock, M. J. van der Wiel J. Phys.B **12**, 2153 (1979).