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Abstract

Tensegrity systems are prestressed frameworks composed by bars and cables. A particular elastic
tensegrity system is examined. This system can be bistable in two fundamentally different ways, one
depending on its geometric dimensions, and the other one depending on the initial deformation,
or prestrain, of the elastic elements. A reduced-order semi-analytical model is derived, and its
predictions are verified with a full-order numerical model. In particular, the critical geometry and
prestrain at which the system switches from one regime to another are determined. This case study
provides a benchmark and new insights on this class of structures.
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1 Introduction

A tensegrity structure is a pin-connected framework composed by bars and cables, with bars typ-
ically in compression, and cables necessarily in tension, such that the system is in a self-stressed
state before the application of external loads.

Tensegrity systems have been considered for the first time in the 1948’s by K. Snelson, when
he was a student of R. B. Fuller. In the same period, D. G. Emmerich was also independently in-
vestigating structures of this kind. Starting in the 1960’s, Snelson built several outdoor tensegrity
sculptures, with bars never connected to each other. His term, “floating-compression”, emphasizes
this feature. Fuller instead used the words “tensile integrity” to highlight the fact that cables consti-
tute a connected set. More details about the origin of tensegrities can be found in Gómez Jáuregui
(2009).

Since the late 1970’s, tensegrity systems have been rigorously studied by mathematicians in
rigidity theory (Roth and Whiteley, 1981; Connelly, 1982), and by structural engineers (Calladine,
1978; Pellegrino and Calladine, 1986; Motro, 1992; Skelton and Sultan, 1997; Oppenheim and
Williams, 1997), with steadily growing interest from the scientific community until present days.
Due to their versatility and to their peculiar properties, applications for tensegrity structures have
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been sought in many areas, especially in civil engineering, aerospace engineering, and robotics.
Some representative references in these fields are: Rastorfer (1988); Motro (2003); Yuan et al.
(2007); Skelton and de Oliveira (2009); Moored and Bart-Smith (2009); Zolesi et al. (2012); Paul
et al. (2005); Shibata and Hirai (2009). Tensegrities are particularly suitable for variable geometry
applications, such as deployable structures or adaptive systems, elements of which can be used as
sensor or actuators. In addition, tensegrity systems possess a highly nonlinear mechanical behavior
(Oppenheim and Williams, 2000, 2001; Michielsen et al., 2012), which can be exploited for designing
new materials (Fraternali et al., 2012).

We focus on an aspect which is seldom examined in the literature, namely, the property of a
tensegrity structure of being bistable or multistable. In the literature on tensegrities, the first oc-
currence of a bistable system appeared in Calladine (1978), as the classic two-bar system exhibiting
snap-through instability. In cases like this, it occurs that by exchanging cables with bars, the energy
passes from having a single well to having a double well. A more significative example has been
given by Defossez (2003), who reported the case of an elastic tensegrity structure with multiple sta-
ble equilibrium configurations. Ranganathan et al. (2005) showed that the classic tensegrity prisms
can pass from one configuration to another with opposite orientation, if large elastic deformations
of its members are allowed. In the same paper, other cases were also presented. More recently, Xu
and Luo (2010) found multiple equilibrium configurations for various tensegrity systems. In Zhang
et al. (2011) another tensegrity system which can have more than one equilibrium configuration
has been presented.

In the present study, we analyze a particular structure (Fig. 1) which can pass from one to two
stable equilibrium configurations, either by a change in the overall geometry of the system, or by
a change of prestrain, i.e. the initial deformation associated with the self-stress in the system. In

Figure 1: Two views of a dowel-and-string model of the tensegrity structure analyzed in this paper.

the next section, we review the basic definitions and notions about tensegrity systems that we need
in order to perform our computations. In the third section, we present the actual analysis of the
bistable structure.

2 Preliminaries

We first introduce the basic notions of selfstress and mechanism for frameworks, which are indepen-
dent of constitutive assumptions. Then we briefly review the notions of stiffness and stability which
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are usually employed for tensegrity systems. Many of the statements we make will be justified in
the last subsection, where we present the detailed elastic formulation employed in the successive
analysis.

2.1 Frameworks, selfstresses and mechanisms

A framework is defined as a set N of N points, called nodes, in the three-dimensional Euclidean
space, together with a set E of E edges connecting pairs of nodes. We will say that IJ ∈ E is the
edge connecting nodes I, J ∈ N . Let pI be the position vector of node I with respect to a certain
reference frame. The configuration of a framework is given by the 3N -dimensional vector p which
groups together all the nodal position vectors. Similarly, we can associate with each node a load
vector and a displacement vector, so that f and u are the 3N -dimensional vectors containing all
nodal loads and nodal displacements respectively. The edge IJ is associated with the axial force it
carries, tIJ , and with its percent elongation, eIJ , so that t and e , respectively, are the corresponding
E-dimensional vectors for the whole framework.

In the linear theory of bar frameworks (Pellegrino and Calladine, 1986), the equilibrium operator,
A, a function of p only, provides the linear relation between axial forces and external loads,

At = f , (1)

while its transpose, the kinematic compatibility operator, AT , links “small” displacements to “small”
elongations,

AT u = e .

For the purposes of this paper, we consider only the case where the equilibrium operator does not
have full rank, meaning that both its nullspace and the nullspace of AT are non-empty: there exist
selfstresses, ts, which are balanced by null loads, and mechanisms, um, nodal displacements which
do not change the length of the edges:

Ats = 0 , AT um = 0 .

We say that a mechanism is nontrivial if it does not correspond to a rigid-body motion of the
framework.

2.2 Stiffness and stability

In the linearized theory of elastic frameworks (e.g. see Guest (2006)), the tangent stiffness operator,
KT , provides the linear relation between displacement increments and load increments,

KT ∆u = ∆f .

This operator is equal to the Hessian of the potential elastic energy with respect to the parameters
chosen to identify a configuration. Given an equilibrium configuration satisfying (1), a general
stability condition would require KT to be positive definite. The tangent stiffness operator can be
decomposed as

KT = KM + KG ,

where KM is the material stiffness operator, which is always positive semidefinite and depends on
the elastic stiffness of the edges, and KG is the geometric stiffness operator, which depends on the
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axial forces in the edges. The material stiffness comes into play only when edges change in length;
the geometric stiffness comes into play only when edges change in direction.

For tensegrity systems, there are two typical notions of stability. Consider a framework whose
equilibrium matrix does not have full rank, and it is subjected to no external forces. We have that
KMu = 0 if and only if u is a mechanism, i.e. when edges do not change in length. We say that
this framework is prestress-stable if it admits a selfstress for which

KGum · um > 0 , for each nontrivial mechanism um .

If the opposite inequality holds for some mechanism, we say that the system is prestress-unstable.
Prestress-stability does not imply stability: even if the prestress-stability condition is satisfied, it

might happen that there are some u , which are not mechanisms, for which KT u ·u < 0, necessarily
having KGu ·u < 0, resulting in an unstable system. We say that a tensegrity system is superstable
if it is prestress-stable and

there is no u such that KGu · u < 0 ,

so that KT must be positive definite. In other words, for a superstable system, the geometric
stiffness is positive along nontrivial mechanisms, and nonnegative otherwise.

We see that superstability is a stronger condition than prestress-stability. However, when a
framework is prestress-stable, it is always possible to build a corresponding physical structure by
making the edges very stiff with respect to the selfstress, or, vice-versa, by applying a very low
selfstress with respect to the elastic stiffness of the edges. For this reason, it is usually stated
that a superstable framework is stable independently of the selfstress level and material properties
(Connelly, 1999; Zhang and Ohsaki, 2007).

2.3 Elastic formulations

Each edge is modeled as a linear spring. We associate to each pair of vertices I, J ∈ N the scalar
kIJ , with kIJ > 0 if IJ ∈ E , and kIJ = 0 if IJ 6∈ E . The axial force of an edge is then given by
tIJ = kIJ (λIJ − λIJ ), with λIJ being the length of the edge, λIJ = ‖pJ − pI‖, and λIJ being the rest
length of the corresponding spring. In this way, the elastic energy of the framework is written as

U =
1
2

∑
IJ∈E

kIJ (λIJ − λIJ )2 .

We first consider the case of the configuration p being a function of n parameters, or Lagrangian
coordinates, grouped in the vector x ≡ (x1, . . . , xn). Notice that we use lowercase subscripts for
these parameters, not to be confused with the uppercase subscripts employed for nodes and edges.
Assuming that no loads are applied to the framework, equilibrium configurations satisfy ∇xU = 0,
where ∇x denotes the gradient operator with respect to x . This is a set of n equations of the form

0 = U,i =
∑
IJ∈E

kIJ (λIJ − λIJ )λIJ ,i =
∑
IJ∈E

tIJλIJ ,i , i = 1, . . . , n , (2)

where (·),i denotes the partial derivative with respect to xi. The last expression shows the form of
the equilibrium operator, when compared to the compact equation At = 0. We see that t must be
a selfstress for the framework. The equilibrium equations are trivially satisfied when t = 0, that
is, when the framework is unstressed. This corresponds to having λIJ = λIJ for all the edges.
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The tangent stiffness operator, KT = ∇2
xU , can be obtained from (2), we have in components:

(KT )ij = U,ij =
∑
IJ∈E

kIJλIJ ,i λIJ ,j + kIJ (λIJ − λIJ )λIJ ,ij

=
∑
IJ∈E

kIJλIJ ,i λIJ ,j + tIJλIJ ,ij , i, j = 1, . . . , n ,
(3)

where the two terms in the summation contribute respectively to KM and KG, and (·),ij denotes
the second partial derivative with respect to xi and xj .

We see that KG = 0 when the framework is unstressed. To see that KM is positive semidefinite,
it is enough to consider the framework unstressed, so that U = 0. Since U cannot be negative,
energy variations can only be positive. Since the first variation is null, ∇xU = 0, the second
variation must be nonnegative, which means that KM is positive semidefinite. From the first term
in (3), we have that KM depends on the material properties of the structure through the spring
constants, and it is directly related to changes in length of members, being null only for mechanisms.
From the second term in (3), we have that KG depends directly on the axial forces, a fact which is
true even for different choices of the constitutive behavior. Moreover, KG is related to changes in
direction of members, a fact which we justify below.

As it often happens in numerical models, the configuration p can just be a function of the
Cartesian coordinates of the nodes. If this is the case, the stiffness operators can be expressed as
follows. Let WIJ be the linear operator

WIJ = kIJ nIJ ⊗ nIJ + ωIJ (13 − nIJ ⊗ nIJ ) , (4)

represented by a 3-by-3 matrix. Here, we have introduced: nIJ , the unit vector parallel to edge IJ ,
nIJ = (pJ − pI)/λIJ ; 13, the identity in a three-dimensional vector space; the scalar ωIJ , which is
the so-called stress of edge IJ , given by ωIJ = tIJ/λIJ . The symbol ⊗ represents the dyadic product,
defined by the relation

(a ⊗ b)c = (b · c)a ,

with a , b and c being arbitrary three-dimensional vectors, and the dot indicating the inner product.
The tangent stiffness operator is then represented by a 3N -by-3N matrix, partitioned into 3-by-3
blocks, with the block in position IJ given by

(KT )IJ =


∑

IH∈E
WIH , I = J ,

−WIJ , I 6= J .

(5)

The two terms in (4), kIJ nIJ ⊗ nIJ and ωIJ (13 − nIJ ⊗ nIJ ), contribute respectively to KM and
KG. We remark that, when KT is applied to u , each WIJ is applied to the displacement vector
of either node I or J . Therefore, since nIJ ⊗ nIJ and (13 − nIJ ⊗ nIJ ) project vectors respectively
along the direction of the edge IJ and on the plane orthogonal to it, we have that KMu is nonnull
when edges change in length, while KGu is nonnull when edges change in direction.

We further observe that (5) can be viewed as the expression of a discrete weighted Laplacian
for the underlying graph of the framework (Godsil and Royle, 2001), where weights are not scalar
but given by the operators WIJ ’s.
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We now discuss some alternative forms of (5). First, (4) can be rewritten as

WIJ = kIJ

λIJ

λIJ

nIJ ⊗ nIJ + ωIJ 13 . (6)

This way, KT takes the form
KT = K̃M + K̃G , (7)

with K̃M and K̃G obtained according to (5) from the contribution of the first and second term of
(6) respectively. Notice that K̃M can be seen as the material stiffness operator of a fictitious elastic
framework whose spring constants have the form k̃IJ = kIJλIJ/λIJ . The operator K̃G is related to
the so-called stress matrix, Ω , an N -by-N matrix, defined component-wise as

(Ω)IJ =


∑

IH∈E
ωIH , I = J ,

−ωIJ , I 6= J .

(8)

This is actually a standard weighted Laplacian of the underlying graph, with the stresses as scalar
weights.

For stiff frameworks, i.e. λIJ ' λIJ for every edge IJ , we have that

K̃M ' KM , K̃G ' KG .

Sometimes in the literature the tangent stiffness operator is computed as

K̂T = KM + K̃G ,

which corresponds to replacing the WIJ ’s with

ŴIJ = kIJ nIJ ⊗ nIJ + ωIJ 13 .

This is probably done to simplify formulas; however, the approximation made is seldom stated
explicitly. It is easy to see that, for a mechanism um, KGum = K̃Gum, so that the prestress-
stability condition can be given in term of K̃G in the same way as before. The definition for
superstability usually found in the literature is given in term of the stress matrix, by requiring Ω
to be positive semidefinite, with the dimension of its nullspace equal to four, plus an additional
condition (Connelly, 1999). Notice that this corresponds to having a positive semidefinite K̃G,
with the dimension of its nullspace equal to twelve. This condition guarantees the framework
to be stable only if K̃M is positive semidefinite, which is true only if λIJ > 0 for every edge IJ
(Guest, 2006). In general, it is possible to have springs with negative rest lengths, e.g. prestressed
springs (Guest, 2011). In such case, this definition of superstability does not imply overall stability.
The definition of superstability given in Subsection 2.2 is consistent even if prestressed springs are
employed. We conclude this section by observing that, no matter which definition is adopted, if we
allow for negative rest-lengths, then a prestress-stable system which is not superstable can always
become unstable for sufficiently small values of the rest-lengths, i.e. for sufficiently large selfstress.
The structure we analyze in the next section is an example where this happens even for positive
rest-lengths.
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3 The bistable system

The tensegrity system object of this paper is depicted in Fig. 2. The figure on the left shows a high-
symmetry equilibrium configuration for this system. High-symmetry configurations are prestress-
stable only for some choices of the geometric parameters. In such case, there are two possibilities:
for low levels of selfstress the equilibrium configuration is stable, and it is unique; for high levels of
selfstress the configuration is unstable, and there are two more equilibrium configurations which are
stable. These are low-symmetry configurations, one of which is shown in Fig. 2 (right). When the
high-symmetry configuration is prestress-unstable, the system still possesses two additional stable,
low-symmetry, equilibrium configurations.

These constitute the two bistable regimes which are available to this structure. In the following,
we first analyze high-symmetry configurations to determine whether they are prestress-stable or
not. Then, we construct a reduced-order model for low-symmetry configurations, to look at the
energy landscapes in each of the above cases. Finally, we confirm the result of the reduced-order
model with a full-order finite-element numerical model.

Figure 2: Computer drawings of the bistable system studied in this paper. A high-symmetry
configuration (left) and a low-symmetry one (right).

3.1 High-symmetry configurations

We remark that in our analysis we consider the structure as a conventional bar-framework, we use
the terms bar and cable only as labels for the edges of the framework. We check a posteriori that
the stress in cables is always non-negative in the configurations considered.

Parallel views of a high-symmetry configuration are shown in Fig. 3. The system is composed
of five bars and sixteen cables. One bar of length 2H is placed on a central vertical axis. Two
bars of length 2L are placed on the two opposite edges of a horizontal rectangle, while two cables
of length 2l, with l < L, form the other two edges of that rectangle. The plane of the rectangle
intersects the vertical bar at a distance h < H from the midpoint of the bar. Four cables connect
the closer end-node of the vertical bar to the nodes at the vertices of the rectangle. There is another
rectangle, identical to the previous one but rotated by an angle of π/2 about the central vertical
axis, placed at the same distance h from the mid-point of the vertical bar, but on the opposite side.
Four cables connect the other end-node of the vertical bar to the nodes at the vertices of the latter
rectangle. Finally, four more cables connect the end-nodes of the horizontal bars which are closer
to each other.
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Given the ratio h/H, the ratio l/L is determined by the self-equilibrium conditions when hori-
zontal cables have null stress; we have

l

L
=

1− h

H

1 +
h

H

.

For each choice of the geometric parameters satisfying this condition, we can construct the equilib-
rium operator, A, and verify that it is rank-deficient, thus admitting self-stresses and mechanisms.
We find that there is only one independent self-stress state ts. With this, we can compute the
geometric stiffness operator KG and test it for prestress-stability. In this way, we constructed the
prestress-stable region for high-symmetry configurations shown in Fig. 4. Later, we will examine
two cases, represented by points A and B on this plot.

Figure 3: Geometry of the high-symmetry configuration.

3.2 Low-symmetry configurations, reduced-order model

We define low-symmetry configurations as those which remain unchanged under the following sym-
metry operations (Fig. 5): a rotation of π about the axis z; an improper rotation of π/2 about the
axis z, that is, a rotation of π/2 about the axis z plus a reflection with respect to the plane x− y.
To remove rigid-body motions, we require the vertical bar to remain fixed and parallel to the axis
z, while the other bars remain parallel to the coordinate planes x− z, y − z (Fig. 5).

If bars are rigid, the number of parameters necessary for identifying each configuration is four.
These can be chosen as the three coordinates, xC , yC , zC , of the center C of a horizontal bar, say
AB, plus the angle ϕ between this bar and the horizontal plane, as shown in Fig. 5. With this
choice, the expressions of nodal coordinates are reported in Table 1.
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Figure 4: Prestress-stable region. Points A and B identify two particular configurations, which are
examined in Section 3.3.

Notice that high-symmetry configurations are obtained for the following values of the parame-
ters:

xC = 0 , yC = l , zC = h , ϕ = 0 . (9)

In our model, we consider only eight cables to be linearly elastic, while the other members
are inextensible cables and rigid bars. The elastic cables are those labeled as a and b in Fig. 5,
plus those symmetrically placed. These cables are depicted in red in Fig. 2. This assumption
reduces the number of independent parameters to two, due to the additional constraints given by
the inextensibility of cables d and e. The lengths ld and le of these cables, are given by

l2d := ‖A−B′′‖2 = (xC − yC + L cosϕ)2 + (−xC − yC + L cosϕ)2 + 4z2
C , (10)

l2e := ‖B′′ −A′′′‖2 = 4y2
C + 4x2

C + 4L2(sinϕ)2 . (11)

node x y z
A xC + L cosϕ −yC zC + L sinϕ
B xC − L cosϕ −yC zC − L sinϕ
A′ −xC − L cosϕ yC zC + L sinϕ
B′ −xC + L cosϕ yC zC − L sinϕ
A′′ yC xC + L cosϕ −zC − L sinϕ
B′′ yC xC − L cosϕ −zC + L sinϕ
A′′′ −yC −xC − L cosϕ −zC − L sinϕ
B′′′ −yC −xC + L cosϕ −zC + L sinϕ

Table 1: Nodal coordinates of low-symmetry configurations (see Fig. 5).
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Figure 5: Lagrangian coordinates for the low-symmetry configuration.

By taking ϕ and xC as independent parameters, we can solve (10) and (11) for yC and zC ,

ld , le = const ⇒ yC = ỹC(xC , ϕ) , zC = z̃C(xC , ϕ) ,

with ỹC and z̃C expressed as

ỹC =

√
1
4
l2e − x2

C − L2(sinϕ)2 ,

z̃C =
1
2

√
l2d − (xC − ỹC + L cosϕ)2 − (−xC − ỹC + L cosϕ)2 .

Differentiating (10) and (11), we have:

2 ld dld = 2(xC − yC + L cosϕ)(dxC − dyC − L sinϕdϕ)+
+2(−xC − yC + L cosϕ)(−dxC − dyC − L sinϕdϕ) + 8 zC dzC ,

2 le dle = 8yC dyC + 8xC dxC + 8L2 sinϕ cosϕdϕ .

By substituting the high-symmetry values (9) into these expressions and considering that dld =
dle = 0, we obtain:

0 = −4(L− l) dyC + 8h dzC ,

0 = 8l dyC .

Then dyC = dzC = 0 holds in a high-symmetry configuration, which means that small displacements
from this configuration occur only with variations in xC and ϕ.
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The lengths of the elastic cables are expressed by:

λ2
a(xC , ϕ) = ‖A−D‖2 = (xC + L cosϕ)2 + ỹ2

C + (H − z̃C − L sinϕ)2 ,

λ2
b(xC , ϕ) = ‖B −D‖2 = (xC − L cosϕ)2 + ỹ2

C + (H − z̃C + L sinϕ)2 .

We will denote by λ0 the common value of these lengths at high-symmetry configurations, λ0 =
λa(0, 0) = λb(0, 0).

By differentiating the above expressions at high-symmetry configurations, we can look for the
displacements causing null elongations, which correspond to the mechanism. Considering the first
expression, we have

2λa dλa = 2LdxC + 2l dyC + 2(H − h)(−dzC − Ldϕ) ,

and by setting dλa = 0 and dyC = dzC = 0, we find

dxC = (H − h) dϕ . (12)

Since similar computations for λb give the same result, high-symmetry configurations possess a
mechanism and its direction is given by (12).

At this point we can compute the potential elastic energy for given rest-lengths and elastic
constants of cables a and b:

Eel(xC , ϕ) = 4
(

1
2

(
ka(λa − λa)2 + kb(λb − λb)2

))
.

3.3 Examples

In the following, we assume same spring constants, ka = kb = k, and same natural lengths,
λa = λb = λ, for the elastic cables. We give examples whose geometric parameters correspond to
points A and B in the two different regions shown in Fig. 4:

• Case A: a prestress-unstable system with L = 1, H = 1/2, and h/H = 0.65. The elastic
constant k is equal to 10, while the ratio (λ0 − λ)/λ0 is equal to 0.1.

• Case B: a prestress-stable system with L = 1/2, H = 1/2, and h/H = 0.15. The elastic
constant is the same as in case A, k = 10.
We further consider two situations: (λ0 − λ)/λ0 = 0.1 (Case B1) and (λ0 − λ)/λ0 = 0.3
(Case B2).

Figures 6, 7 and 8 show the energy contour plots for cases A, B1 and B2 respectively. In Case
A, the system is bistable, with the high-symmetry configuration being unstable. The two stable
configurations are placed along the direction of the mechanism, represented by a thick blue line.
In Case B1, there is one stable configuration, which is the high-symmetry configuration. In Case
B2, the system is bistable. Again the high-symmetry configuration is unstable. The two stable
configurations are placed far away from the direction of the mechanism.
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Figure 6: Energy contour plot for Case A: L/H = 2, h/H = 0.65, (λ0 − λ)/λ0 = 0.1. The thick
blue line represents the direction of the mechanism. The thin red lines represent the directions of
the eigenvectors of the tangent stiffness matrix in a finite element model (notice that they do not
appear to be orthogonal to each other due to the scaling of the axes). The red mark corresponds
to the equilibrium configuration obtained by a dynamic relaxation procedure applied to the finite
element model. The energy increases by 0.41% when passing from the minimum value to the value
at the origin.

3.4 Numerical models, critical prestrain

To assess the validity of these results, obtained with a reduced model with only two degrees of
freedom, we performed some numerical computations on a full finite element model. Rigid bars
and inextensible cables have been assigned very large spring constants.

First, we computed the 30-by-30 tangent stiffness matrix in the high-symmetry configuration.
This matrix was then reduced to a 2-by-2 matrix by considering only the two displacement vectors
which were compatible with our assumptions on symmetry and inextensibility. The thin red lines
shown in Figs. 6, 7 and 8 correspond to the directions of the eigenvectors of this reduced tangent
stiffness matrix.

In Case A (Fig. 6) the high-symmetry configuration is unstable. The direction of the mechanism,
represented by the blue line, is close to the red line corresponding to the negative eigenvalue. This
reflects the prestress-instability condition: the curvature of the energy is negative along the blue
line. In Case B, the blue line is not close anymore to the red lines. The high-symmetry configuration
is prestress-stable both in Case B1 (Fig. 7) and in case B2 (Fig. 8), with the energy having positive
curvature along the blue line. However, the eigenvalues of the reduced matrix are both positive only
in Case B1. This shows that there is a critical value of the prestrain, (λ0− λ)/λ0, for which one of
the eigenvalues becomes negative, with the high-symmetry prestress-stable configuration becoming
unstable. Figure 9 shows the contour plot of the critical prestrain obtained numerically.

To verify that the reduced model effectively captures the behavior of a corresponding physi-
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Figure 7: Energy contour plot for Case B1: L/H = 1, h/H = 0.15, (λ0 − λ)/λ0 = 0.1. The thick
blue line represents the direction of the mechanism. The thin red lines represent the directions of
the eigenvectors of the tangent stiffness matrix in a finite element model (notice that they do not
appear to be orthogonal to each other due to the scaling of the axes).

cal system, we applied to the finite element model a dynamic relaxation procedure with kinetic
damping. Dynamic relaxation is a form-finding procedure to obtain the equilibrium configuration
of tensile-structures and tensegrity structures (Topping and Ivanyi, 2005; Zhang et al., 2006). The
equilibrium configurations which have been found by employing this procedure are in agreement
with the reduced model. These configurations are marked with a red star in Figs. 6 and 8. Moreover,
we verified that the stress in all cables was positive in these configurations.

4 Concluding remarks

This case study showed that it is possible to change the mechanical behavior of a tensegrity system
in two different ways. A certain stable system can become unstable, while displaying additional
stable configurations, either by changing its geometry, or by increasing its prestress. In the latter
situation, the prestress-stable configuration is actually unstable. Usually this can happen when a
prestress-stable system is not superstable and we allow the rest-lengths to be negative, as for the
case of prestressed springs. In the present system this occurs while rest-lengths remain positive.
One open question would be whether additional stable configurations always exist or not, and it
can be the subject of further studies.

In relation to this, the definition of superstability given in this paper differs from the one found
in the literature, in that it is consistent no matter what is the sign of the rest-lengths: according
to our definition, superstability always implies stability.

Regarding the reduced model, the choice of the elastic and inextensible cables is crucial in the
analysis. With a different choice we might not be able to catch the bistable behavior. In addition,
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Figure 8: Energy contour plot for Case B2: L/H = 1, h/H = 0.15, (λ0 − λ)/λ0 = 0.3. The thick
blue line represents the direction of the mechanism. The thin red lines represent the directions of
the eigenvectors of the tangent stiffness matrix in a finite element model (notice that they do not
appear to be orthogonal to each other due to the scaling of the axes). The red mark corresponds
to the equilibrium configuration obtained by a dynamic relaxation procedure applied to the finite
element model. The energy increases by 0.53% when passing from the minimum value to the value
at the origin.

in a bistable case, like Case A or Case B2, the energy values at the two minima do not necessarily
need to be the same, since different values can be obtained by choosing ka 6= kb for the spring
constants.

Lastly, every definition of stability given here or in the literature is local, i.e. it applies to
a particular configuration. Paralleling the definition of global rigidity (Connelly, 2005), we can
envisage a notion of global stability for elastic systems possessing a unique stable configuration.
Globally stable structures are certainly useful in applications. A characterization of global stability
would then allow one to distinguish between globally stable systems and multistable ones, such as
those already found in the literature.
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Figure 9: Contour plot of critical prestrain as a function of the geometric parameters. When
(λ0 − λN )/λ0 becomes greater than the critical prestrain, the structure becomes bistable. This
means that the high-symmetry prestress-stable configuration becomes unstable. The thick line
correspond to the boundary between prestress-stable and prestress-unstable regions (cf Fig.4). The
critical prestrain tends to zero when approaching the boundary.
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